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Project Descriptions 

Overview 

Our project consists of recreating the Nintendo Entertainment System on an FPGA. Using a 
Terasic DE2i-150 development board, we wish to design an NES emulator from the ground 
up. The process involves implementing the system in terms of units. This means we will set 
up all appropriate drivers and controllers needed in a certain module before moving on the 
the next step. This ensures an efficient use of the limited time we have. 

 

Who Are We? 

We are a group of Computer Science and Engineering students from University of California, 
Riverside. As part of our Senior Design class in our Summer Study Abroad course in 
Lausanne, Switzerland, we decided to tackle something that deals with both hardware and 
software interfacing. Since the concentration deals with Computer Architecture and 
Embedded Systems, we felt that designing an emulator on an FPGA would be a great project 
for the course. 

 

The Team 

Sergio Morales  
Handled coding the RP2A03 CPU from scratch, and the Altera Nios II SOPC interface 
between any peripherals. 

Hector Dominguez 
Dealt with coding the Picture Processing Unit for video rendering (built from scratch), and the 
SD Card interface for reading NES games. 

Omar Torres 
Worked with the hardware, NES/SNES Controllers, VGA signals, and boot loader.  

Randy Truong 
Worked with hardware, handled coding of the NES/SNES Controllers as well as worked on 
the VGA signals. 

Kevin Mitton 
Worked with hardware, started into the APU interface 
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Problem Statement 
 
Time Constraints 
The first priority in our project is to have a working prototype within the timespan we have. 
Building a working NES Emulator on a Terasic DE2i-150 FPGA board requires a large 
amount of time spent researching before actually programming and implementing each 
component. A certain amount of time spent learning to use the development tools, such as 
Eclipse with Altera plugins, Quartus Web Edition, and Git for version control, so we’d have to 
account for that as well. 
 
Previous Experiences 
The group has sufficient experience through previous courses to be able to work on 
designing, prototyping, and testing. For example, the team may utilize experience in VHDL 
from Computer Architecture course to learn Verilog for FPGA programming and running 
testbenches. 
 
Access to Required Software/Hardware 
In terms of hardware and software, we have access to everything we would need to 
complete the project. This includes the FPGA board, the Altera’s editor software, and any 
other necessary hardware such as a monitor, NES Controller, and SD cards to build the NES 
FPGA Emulator. 
 
Is This a Significant Design Problem? 
The project has several components to implement: the CPU, APU, PPU, VGA Controller, 
NES Controller, and several interfacing controllers on the board itself. We were required to 
learn the software given to us for the FPGA board and to learn Verilog to implement these 
components. Implementation will require the use of certain state machines and memory 
management to correctly emulate NES games. This why the design is non-trivial. Certain 
decisions in how we design, for example, the CPU, will affect performance immensely. This 
is because the NES design scheme is based purely off hardware, whereas we are offloading 
some of this hardware description in software, specifically in C. 
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System Design  
 
We took advantage of the many peripherals the Terasic DE2-i150 board featured, therefore, 
we tried to focus the design around the FPGA board, leaving only a few components to be 
used outside of the board. Even then, we utilized the general purpose I/O (GPIO) pins. As an 
overview of what we used, the follow diagram represents our entire system design: 
 

  
High level view of our design. 

 

Controllers 
 
We used the GPIO pins to connect the controller interface for our emulator. From there, we 
wrote a Verilog module that is able to keep track of which buttons are pressed, by storing the 
8-bit value in a register. 
 

Game ROMs 
 
We use an SD card to store the NES game roms. This allows our emulator to let the user 
choose from a selection of roms that are stored on the card. 
 

Audio 
 
Using the GPIO pins and a generic speaker, we plan to send NES audio through here. 
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Video 
 
NES graphics are displayed through the board’s VGA ports. This is controlled by the Nios II 
CPU core, since there was an available VGA controller IP (intellectual property) core handy.  
 
 

USB Blaster PC Interface 
 
This was used to configure the FPGA through Altera’s ‘Quartus II Web Edition’. In addition, 
we used Eclipse (with some Altera plugins) as our software development platform for writing 
certain components in C. This also allowed us to be able to debug our emulator, as a 
terminal in Eclipse are available to use for printing and parsing through bugs. 
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Program Design 
 
Describing the design of our emulator is broken up into the following categories: 
 

● NIOS II SOPC Interface 
● NES CPU - The RP2A03 Processor 
● NES PPU - The Picture Processing Unit 
● NES APU - The pseudo-Audio Processing Unit 
● SD Card Interface 
● VGA Interface 
● Controller Interface 

 
 

NIOS II SOPC Interface 

In order to facilitate rapid development of our NES emulator prototype, we decided it would 
be best to use Altera’s Nios II IP core, in order to off load heavy programming into C, rather 
than the harder-to-debug-and-verify Verilog language. This is one of the main components 
used throughout our component design in Qsys. In a nutshell, Nios II is a 32 bit RISC 
processor, which, combined with the Eclipse package, allows us to compile C programs, 
and be able to run them on the FPGA. Note that this is only possible after we’ve configured 
the FPGA with the Nios II IP core.  
 
Nios II also comes with very useful features and libraries that we’ve taken advantage of. This 
is specifically when it comes to SD Card interfacing, VGA controlling, and accessing certain 
registers we stored on the FPGA in our main Verilog module from our C program. An 
example of such a register would be the button input from our controllers. 
 
Since the C program needs to be stored somewhere in memory for the Nios processor to be 
able to run it, we use the SDRAM on-board as the primary storage for the entire C program, 
and anything that needs to be pushed to the stack and heap. Another great aspect of Qsys, 
is that we are able to have memory-mapped I/O registers that connect from within our 
Verilog code, to the Nios II processor, allow possible communication between our C program 
to any exposed modules. One example of our use of this is controller input, which will be 
covered more in detail later. 
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CPU - The Ricoh 2A03 Processor 

The Nintendo Entertainment system has a Ricoh 2A03 Processor, which consists of: 

● A MOS 6502 Microprocessor lacking Binary-Coded Decimal mode. 
● 22 memory-mapped I/O registers 
● pseudu-Audio Processing Unit 
● Communication to and from Picture Processing Unit 

 

Outline 
 

● The NMOS 6502 Microprocessor 
● Instruction Set 
● Decoding Opcodes 
● Power-up State and Interrupt Handling 
● Memory Mapped I/O 

 

NMOS 6502 Microprocessor 

The NMOS 6502, already known for being featured in Apple 

and Atari systems, serves as the microprocessor for running 

NES cartridge-based games.  

It’s 16-bit address bus allows for up 64kB of addressing 

space, without external multi memory controllers that some 

NES games may make use of. Data, however, is a byte long. 

It’s instruction set relies solely on 3 registers for arithmetic 

and storing values, the Accumulator (​A​), and Index registers 

X​ and ​Y​. 

Three other registers, the Program Counter (​PC​), Stack 

Pointer (​SP​), and Status register (also known as the 

processor flags, ​P​), are all essential to run instructions. It’s important to note that all registers 

are 8-bits wide, with the exception of the PC, due to the address bus.  
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The Program Counter keeps track of the currently executing instruction, which is 

incremented automatically. The Stack Pointer is an area in RAM that can be used by the NES 

program to store data and hold return values for interrupts and subroutines.  Finally, P 

register holds the values for certain flags that are triggered instructions and interrupts- they 

are vital for some instructions, as they rely on flags that have been set by previous ones. 

The following memory map of the NES A203 illustrates the main use of each memory region. 

Note memory from now on will be referred by ‘$’, in hex. 

Region Location 

Upper PRG Bank $C000-$FFFF 

Lower PRG Bank $8000-$BFFF 

SRAM $6000-$7FFF 

Expansion ROM $4020-$5FFF 

I/O Registers $4000-$401F 

$2000-$2007 [​M​] $2008-$3FFF 

I/O Registers $2000-$2007 

$0000-$07FF [​M​] $0800-$1FFF 

RAM $0200-$07FF 

Stack $0100-$01FF 

Zero Page $0000-$00FF 

The NES CPU Memory Map 

The two PRG banks represent the memory region of the NES program, which are 

memory mapped to the cartridge itself. SRAM and Expansion ROM are filled depending on 

whether the game uses them or not. I/O Registers are used primarily for joypads and the 

Picture Processing Unit. Note that the Stack Pointer has an implicit 0x100 added to it, since 

it is only 8 bits, and we would need at least 9 to access Stack memory. Finally, Zero Page is 

a special area of memory that would only require one byte to access because of the range. 
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Many instructions make use of this area, since it would require less CPU cycles to read and 

write here. 

Another important detail of the NES CPU memory map is mirroring. Regions denoted 

by [​M​] are mirrored copies of previous regions. Writing or reading here would produce the 

same effect as writing or reading to the original region, and vice-versa to the original. 

Before executing instructions, it’s important to know about the Status/Processor 

Flags in the 6502: 

Bit Flag Description 

0 C - Carry This flag is set to ‘1’ if the last instruction, most likely arithmetic 
operations such as ADC caused a carry. 

1 Z - Zero Set to ‘1’ if last instruction caused a result of 0. 

2 I - Interrupt Disable Set to ‘1’ for IRQ interrupts to be disabled. See ‘​Power-up 
State and Interrupt Handling​’ for more info on interrupts. 

3 D - Enable BCD Not used in NES. Normally this would cause add and subtract 
instructions to operate in BCD mode. 

4 B - Break flag This flag only exists in BRK operations, when the  flags are 
pushed to the stack. 

5 Unused  

6 V - Overflow Set to ‘1’ if last instruction resulted in an overflow. 

7 N- Negative Set to ‘1’ if last instruction resulted in bit 7 of the result to be 1. 

6502 Processor Flags/Bits 

6502 Instruction Set 

Although the NES doesn’t utilize Binary-Coded Decimal feature of the 6502, there are 

still a variety of instructions for the programmer to choose from. There are 56 total unique 

instructions to use. Note that there are different addressing modes that the CPU may use to 

access or store data. Taking this into account, there are over 150 possible 
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instructions/opcodes. Instruction addressing modes can be broken down into 13 different 

types, as shown in the table below:  

Addressing 
Mode 

Description Example 

Accumulator Instructions that execute directly with or on register A.  LSR A 

Absolute These instructions have a 16-bit address as the 
operand. 

LDA $2002 

Absolute, X Take a 16-bit address as well, but adds register X to 
the end. 

LDA $2002, X 

Absolute, Y Same as the latter, except it uses Y. AND $6000, Y 

Immediate Takes in the operand as a constant byte. LDA, #$50 

Implicit No operand required to perform instruction. CLC 

Indirect Used only for JMP instruction; operands identify 
location of the where the actual instruction will be 
executed. 

JMP 

Indexed Indirect Fetches location of value from Zero Page memory 
using the operand byte + X, and operand byte + X + 1.  

LDA ($FF, X) 

Indirect Indexed Fetches location of value from ZP memory using 
operand byte, and operand byte + 1, then adds Y to 
give full address. 

STA ($FF), Y 

Relative Used for branch instructions. Operand is used as 
signed offset to next instruction to jump to. 

BNE $E5 

Zero Page One operand is used for memory accesses, because 
Zero Page only ranges from $0000-$00FF. 

LDA $F5 

Zero Page, X Uses the operand byte + X as memory location for 
value. 

AND $10, X 

Zero Page, Y Uses the operand byte + Y as memory location for 
value 

LDX $10, Y 

The different addressing modes in the NES Instruction Set 

Note, as mentioned before, the 6502 uses 8-bit registers. Since we need 16-bits  to address 

memory, many operations handle addresses or offsets in terms of 2 byte chunks. The 6502 
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is ​little endian​. This means the lower byte of an address is ​always​ read first when working 

with memory. Because of these different addressing modes, each individual instruction has 

its own number of clock cycles needed to finish. They range from being 2 to 7 cycles. 

Decoding Opcodes 

There are about 50 unique instructions. Each of them may have several variations based on 

the addressing modes, but the general execution is the same. All instructions start off 

through the CPU decoding the first byte as the instruction (the contents of the PC), 

incrementing the PC, and starting execution.  

Execution almost always involve memory reading and writing, storing or manipulating 

registers, or branching. Rows represent lower bits while columns represent upper bits. ORing 

them together leads to the Opcodes. The following table describes all possible opcodes: 

  0x00 0x01 0x02 0x03 0x04 0x05 0x06 x07 

0x00 BRK b ORA (d,X)       ORA d ASL d   

0x10 BPL r ORA (d),Y       ORA d,X ASL d,X   

0x20 JSR a AND (d,X)     BIT d AND d ROL d   

0x30 BMI r AND (d),Y       AND d,X ROL d,X   

0x40 RTI EOR (d,X)       EOR d LSR d   

0x50 BVC r EOR (d),Y       EOR d,X LSR d,X   

0x60 RTS ADC (d,X)       ADC d ROR d   

0x70 BVS r ADC (d),Y       ADC d,X ROR d,X   

0x80   STA (d,X)     STY d STA d STX d   

0x90 BCC r STA (d),Y     STY d,X STA d,X STX d,Y   

0xA0 LDY # LDA (d,X) LDX #   LDY d LDA d LDX d   

0xB0 BCS r LDA (d),Y     LDY d,X LDA d,X LDX d,Y   
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0xC0 CPY # CMP (d,X)     CPY d CMP d DEC d   

0xD0 BNE r CMP (d),Y       CMP d,X DEC d,X   

0xE0 CPX # SBC (d,X)     CPX d SBC d INC d   

0xF0 BEQ r SBC (d),Y       SBC d,X INC d,X   

  0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E x0F 

0x00 PHP ORA # ASL A     ORA a ASL a   

0x10 CLC ORA a,Y       ORA a,X ASL a,X   

0x20 PLP AND # ROL A   BIT a AND a ROL a   

0x30 SEC AND a,Y       AND a,X ROL a,X   

0x40 PHA EOR # LSR A   JMP a EOR a LSR a   

0x50 CLI EOR a,Y       EOR a,X LSR a,X   

0x60 PLA ADC # ROR A   JMP (a) ADC a ROR a   

0x70 SEI ADC a,Y       ADC a,X ROR a,X   

0x80 DEY   TXA   STY a STA a STX a   

0x90 TYA STA a,Y TXS     STA a,X     

0xA0 TAY LDA # TAX   LDY a LDA a LDX a   

0xB0 CLV LDA a,Y TSX   LDY a,X LDA a,X LDX a,Y   

0xC0 INY CMP # DEX   CPY a CMP a DEC a   

0xD0 CLD CMP a,Y       CMP a,X DEC a,X   

0xE0 INX SBC # NOP   CPX a SBC a INC a   

0xF0 SED SBC a,Y       SBC a,X INC a,X   

The full opcode table for the 6502. Blank spaces are illegal/unofficial opcodes 
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Power-up State and Interrupt Handling 

One important thing to note is that the 6502’s power-up state starts off by executing an 

interrupt, that is, it performs a Reset interrupt. For each interrupt, there is a reserved area in 

memory that contains the starting point of the handler, or subroutine. The NES utilizes three 

main interrupts: 

● Interrupt Service Request (IRQ) - This interrupt in the NES is simulated in software by 

calling the BRK instruction, except that the PC is loaded with the contents the IRQ 

vector. 

● Reset - This interrupt is nearly always the starting point for NES games. It is up to the 

game programmer to decide how the game starts, whether they initialize memory to 

0, or they skip straight to the game. A very important note about Reset is that nothing 

in memory is actually ‘reset’, merely the PC is set to start back to where the game 

previously started. This is how some games were able to have special features that let 

the user restart the game and still have some sort of memory saved. 

● Non-maskable Interrupt - This interrupt, as the name suggests, cannot be ignored, 

like IRQ can. In the NES, this is controlled by the Picture Processing Unit. Normally 

when the screen is done rendering, NMI will be enabled, causing the game to perform 

a subroutine by setting the PC to the contents of the NMI vector. This can be used for 

situations where the programmer needs to wait for the screen to finish rendering 

before running a certain piece of code. 

 

Interrupt Location 

NMI $FFFA-$FFFB 

Reset $FFFC-$FFFD 

IRQ $FFFE-$FFFF 

Locations of Interrupt vectors in CPU memory 
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Memory Mapped I/O 

The Ricoh A203 bridges communication between all peripherals through memory mapping 

with the following memory regions: 

● Audio: Locations $4000-$4015 serve as registers between audio, mainly for volume, 

function generators, delta modulation channel, etc. 

● Controllers: $4016 and $4017 are player 1 and 2’s controllers. Any button input is 

directly mapped to these registers, available for the game program to read from. 

● Video: In order to communicate between the NES’ Picture Processing Unit, there is a 

set of registers used between both units use for rendering data: 

Register Description 

$2000 
‘PPUCTRL’ 

Write only. Contains flags for controlling PPU. 

$2001 
‘PPUMASK’ 

Write only. Controls screen rendering and color. 

$2002 
‘PPUSTATUS’ 

Read only. Used to determine rendering timing. 

$2003 
‘OAMADDR’ 

Write only. Refers to the address to which you wish to write data to the 
Sprite table (OAM). 

$2004 
‘OAMDATA’ 

Read/Write. Sprite data is written here. Note that the OAMADDR is 
incremented every time a write happens. 

$2005 
‘PPUSCROLL’ 

Write (twice) only. Register is use for scrolling the the screen. 

$2006 
‘PPUADDR’ 

Write (twice) only. Refers to the address to which you wish to write data 
to the Nametable, or the background data. 

$2007 
‘PPUDATA’ 

Read/Write. Data to be written/read at specific address in PPU memory is 
in this register. Note, writes to this register trigger an auto-increment to 
the PPU address. Reading from this register grab data from a post-buffer, 
which means 2 reads are required to actually grab the right data specified 
at the PPU address. 

CPU-PPU I/O Registers 
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PPU - The Picture Processing Unit 

The Picture Processing Unit is a microprocessor that the original Nintendo (NES) used             

to generate image frames from data stored in memory. 

PPU Subtopics 
●  Memory Map 
●  Pattern Tables 
●  Nametable/Attribute Tables 
●  Color Palettes 
●  Object Attribute Memory (OAM) 
●  Registers 
●  Timing 

 Internally the PPU runs three times faster than the CPU. Therefore, for every CPU              
cycle the PPU executes three cycles. The PPU is controlled via eight registers ($2000              
-$2007), which are visible from the CPU address space. The CPU sends information and              
data to these registers. Next, they are read by the PPU onto the PPU memory map.  
 

  PPU Memory Map   

Address Size Description 

$0000 $1000 Pattern Table 0 

$1000 $1000 Pattern Table 1 

$2000 $3C0 Name Table 0 

$23C0 $40 Attribute Table 0 

$2400 $3C0 Name Table 1 

$27C0 $40 Attribute Table 1 

$2800 $3C0 Name Table 2 

$2BC0 $40 Attribute Table 2 

$2C00 $3C0 Name Table 3 
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$2FC0 $40 Attribute Table 3 

$3000 $F00 Mirror of 2000h-2EFFh 

$3F00 $10 BG Palette 

$3F10 $10 Sprite Palette 

$3F20 $E0 Mirror of 3F00h-3F1Fh 

  

Pattern Tables 

The pattern table holds 8x8 Pixel tiles that are used to draw images on the screen.                  

One tile set holds 256 tiles, which is equivalent to 4096 bytes per set. Each individual                

tile holds 2 bits per pixel. Therefore, since one tile is 8x8 pixel and each pixel uses 2                  

bits, so to draw one tile we need a total of 16 Bytes. The PPU uses two pattern tables,                   

one for the background and the other for sprites. However, the PPU allows sprites to               

access both Pattern tables.  

 

 

Pattern Tables 

 

Address Description 

$0000 Background 

$1000 Sprite 
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Remember we need 16 bytes in order to draw one tile. In order to display one tile from the                   

pattern table, first we need to grab the initial byte. After we have the initial byte, the next 15                   

bytes plus the initial byte will be the data for the tile.  

 

Address Value Address Value 

$0000 00010000 $0008 00000000 

$0001 00000000 $0009 00101000 

$0002 01000100 $000A 01000100 

$0003 00000000 $000B 10000010 

$0004 11111110 $000C 00000000 

$0005 00000000 $000D 10000010 

$0006 10000010 $000E 10000010 

$0007 00000000 $000F 00000000 

  

In the table above, it shows the first 16 bytes from the pattern table (first tile). It works                  

by combining the first 8 bytes with the second 8 bytes. Thus forming one 8 byte Tile. For                  

example, for the first iteration we obtain the address $0000 and $0008. The bits from the first                 

address will serve as bit 0 and the bits on the second address will serve as bit 1. After                   

concatenating these two values we will have the following in terms of decimal form: 
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Result 

0 0 0 ​1​ 0 0 0 0 

0 0 ​2​ 0 ​2 ​0 0 0 

0 ​3​ 0 0 0 ​3​ 0 0 

2​ 0 0 0 0 0 ​2​ 0 

1 1 1 1 1 1 1​ 0 

3​ 0 0 0 0 0 ​2​ 0 

3​ 0 0 0 0 0 ​3​ 0 

0 0 0 0 0 0 0 0 

  

Each byte in the new eight-byte tile is composed of eight 2-bit sequences as seen below. 

0 0, then the 2 bit sequence would 0 
0 1, then the 2 bit sequence would 1 
1 0, then the 2 bit sequence would 2 
1 1, then the 2 bit sequence would 3 

 
These 2 bits represent the least significant bits of the 4-bit number, which is needed to                

identify the image or sprite palette entry, then it will be used to draw that specific pixel on the                   

screen.  
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NameTable and Attribute Table 

Nametables have the first byte of every tile that will be rendered to the screen during                

the specific timing. The PPU can render 32 tiles horizontally and 30 tiles vertically. Thus, a                

full render frame would consist of 960 tiles. The nametable stores 960 bytes, where each               

byte is the first byte of a tile to be found in the pattern table. Therefore, to draw each                   

individual tile we have to look for the nametable byte in the pattern table. Once the byte has                  

been found on the pattern table, then the following 15 bytes (on the pattern table) plus the                 

byte found will create that tile.  

 

Each nametable has an associated attribute that holds the upper two bits of the color               

for the tile. Remember that after concatenating the 16 bytes from the pattern table into an                

8-byte tile, we obtain the two lower bits of the 4-bit pixel color for every 2-bit sequence. The                  

attribute table is 64 bytes long. There is not enough bytes to represent all 960 bytes in the                  

nametable. So, every byte in the attribute is used for 16 tiles of the nametable, and each                 

nametable byte represents one tile. However, the 16 tiles that the attribute byte controls are               

in 4x4 tiles. For example in the diagram below, it shows the nametable tiles in order from left                  

to right, and top to bottom. Each attribute byte corresponds to 16 nametable tiles. The first                

attribute byte is used for the tiles shown in yellow in the diagram below. As you can see, the                   



Page 20 
 

sixteen tiles that the attribute byte is used for are in 4x4 tile squares. The second attribute                 

byte is used for the tiles shown in red. This continues from left to right, and top to bottom. 

Nametable Tiles (Screen Frame) 

 

The first attribute byte is used for the 4x4 tiles colored in yellow in the diagram above.                 

Lets grab these tiles to explain how the attribute byte works.  

 

The diagram above displays the tiles that represent the first attribute byte. The             

attribute byte has 8 bits and we have 16 tiles. We also know that upper two color bits for                   

each pixel in the tiles comes from the attribute table. So we are going to divide these 4x4                  

tiles into four 2x2 sections. The diagram below shows the sections divided by color. 
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We have divided the table into 4 sections of 2x2 tiles. We are going to assign the                 

corresponding bits.  

Attribute Byte example: 1 1 1 0 0 1 0 0  

The way this works is that each 2x2 table within the 4x4 tiles will use the same 2 bits. For                    

example tiles 1, 2, 33 and 34 are a 2x2 tile subset of the 4x4 tile. These tiles will be sharing                     

the same two bits from the attribute byte. 

 

The two bits obtained for the tiles from the attribute byte are the upper two color bits. The                  

lower two bits are obtained from the pattern table after combining the 16 bytes. 

Color Palettes 

 The PPU has two color palettes one for the background tiles, and for the sprite tiles.                

The background color palette begins at address $3F00 and the sprite color palette begins at               

address $3F10.  

Earlier, we learned how to obtain a 4-bit hex value that represents the color bits. The                

lowest two bits were obtained from the pattern table and the upper two bits were obtained                

from the attribute table (background). This 4-bit value represents an offset of the palette              

table. If the color is for a background tile, then we obtain the data stored on the background                  

starting address plus the 4-bit offset. The same applies for sprite. The data stored in this                

address will be an offset to the system color palette that we hard coded into the system. The                  

data stored on the system color palette are 30-bit values that we designed to represent the                

NES colors to be output on the DE2i-150 board in RGB. The NES does not output in RGB                  

format, instead it outputs in NTSC format and we did not understand how that worked, so                

we built our own NTSC to RGB controller.  
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Object Attribute Memory (OAM) 

The OAM is extra memory block outside the PPU and CPU memory maps. This               

memory block contains all of the sprite information to be displayed at that exact rendered               

frame. The OAM is similar to the nametables because nametables only handle Background.             

Therefore, the OAM only handles sprites. Sprites are moveable characters that are drawn             

onto the screen. They can be either in format of 8x8 pixels or 8x16 pixels. Most characters in                  

the NES are formed of multiple sprites. As explained earlier, the sprite data is stored on the                 

pattern tables while the sprite attributes are stored on the extra memory block. 

 The process of outputting sprites onto the screen is similar to outputting the             

background tiles. The OAM stores a total of up to 64 sprites that will be rendered to the                  

screen at that specific time. For every screen frame, this table will update to the new data                 

similar to the nametables. Each sprite in the OAM is composed of 4 bytes. Thus, the whole                 

memory block has a total of 256 Bytes long. Each sprite has the following information,  
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Byte 0: Y Position  of the top left of sprite minus one 
  Byte 1: The Tile index number within the pattern table 

     Byte 2: Attributes of the sprite (palette, priority, flipping) 
       Byte 3: X Position of left side of the sprite to be rendered 

  

Sprites that are 8x16 pixels use different pattern tables based on their index number.              

If the index number is even, the sprite data is in the first background pattern table, otherwise                 

it is on the sprite pattern table. Sprites are given priority on their position in the extra memory                  

block. On each scanline, the system calculates which sprites are going to be drawn on that                

scanline. Lowest priority sprites are the first to be drawn to ensure the highest priority sprites                

are drawn on top. However, only eight sprites can be displayed per scanline. 

Registers (I/O) 

The PPU uses eight internal I/o registers to communicate with the CPU. These               

registers are located in the CPU memory map($2000-$20007). These registers are used to             

transfer data to the PPU, which changes the output on the screen and vice versa. The                

description of every register byte is explained below. (The following information was            

obtained from www.nesdev.com) 

 
Register $2000 
7654 3210 
 | | | |   | | | |  
 | | | |   | |++- Base nametable address 
 | | | |   | | (0 = $2000; 1 = $2400; 2 = $2800; 3 = $2C00) 
 | | | |   |+--- VRAM address increment per CPU read/write of PPUDATA 
 | | | |   | (0: add 1, going across; 1: add 32, going down) 
 | | | | +---- Sprite pattern table address for 8x8 sprites 
 | | | | (0: $0000; 1: $1000; ignored in 8x16 mode) 
 | | | +------ Background pattern table address (0: $0000; 1: $1000) 
 | |+------- Sprite size (0: 8x8; 1: 8x16) 
 |+-------- PPU master/slave select 
 |       (0: read backdrop from EXT pins; 1: output color on EXT pins) 
 +--------- Generate an NMI at the start of the 
 vertical blanking interval (0: off; 1: on) 
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Register $2001 
7654 3210 
| | |  |  | |  | | 
| | |  |  | |  |+- Grayscale (0: normal color; 1: produce a monochrome display) 
| | |  |  | |+-- 1: Show background in leftmost 8 pixels of screen; 0: Hide 
| | |  |  |+--- 1: Show sprites in leftmost 8 pixels of screen; 0: Hide 
| | |  |+---- 1: Show background 
| | |+----- 1: Show sprites 
| |+------ Intensify reds (and darken other colors) 
|+------- Intensify greens (and darken other colors) 
+-------- Intensify blues (and darken other colors) 
 
Register $2002 
7654 3210 
| | |  |   | | | | 
| | |+-++++- Least significant bits previously written into a PPU register 
| | |  (due to register not being updated for this address) 
| |+------- Sprite overflow. The intent was for this flag to be set 
| | whenever more than eight sprites appear on a scanline, but a 
| | hardware bug causes the actual behavior to be more complicated 
| | and generate false positives as well as false negatives; see 
| | PPU sprite evaluation. This flag is set during sprite 
| | evaluation and cleared at dot 1 (the second dot) of the 
| | pre-render line. 
|+-------- Sprite 0 Hit.  Set when a nonzero pixel of sprite 0 overlaps 
| a nonzero background pixel; cleared at dot 1 of the pre-render 
| line.  Used for raster timing. 
+--------- Vertical blank has started (0: not in VBLANK; 1: in VBLANK). 
 Set at dot 1 of line 241 (the line *after* the post-render 
 line); cleared after reading $2002 and at dot 1 of the 
 pre-render line. 
  
 
Register $2003 
This is the OAMADDR register where the CPU tells the PPU what address the sprite data will                 
be written to. 
  
Register $2004 
This is the where the CPU will write the sprite data. The PPU grabs the data from register                  
$2004 and stores it at the location specified by register $2003. 
  
Register $2005 
This is the scrolling register. This registers tells the PPU what pixel to write from the                
nametable on the top left corner 
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Register $2006 
This register writes the address of where the nametable data is going to be stored. 
  
Register $2007 
This register tells the PPU the data that is going to be stored at the address specified by                  
register $2006 

Timing 

Timing was one of the hardest principles of the PPU to implement. A simple mistake                

grabbing data or grabbing extra data on the specific cycle could potentially affect the output.               

The PPU renders 262 scan lines per frame, where 240 scanlines correspond to outputting to               

the frame since we are dealing with 256x240 screen resolution. The remaining 20 scan lines               

are called Vertical Blank (Vblank). During the Vertical Blank scan lines, the CPU begins              

writing to the IO Registers and the PPU begins filling up the nametables, attribute tables and                

OAM for the next upcoming frame. This is the only time the CPU is able to write to the PPU                    

via the IO Registers because otherwise it could affect the current frame being render at the                

moment. The PPU is only allowed to write one pixel for every PPU cycle. Therefore, it takes                 

about 341 PPU cycles per scanline for grabbing data and rendering the 256 pixels per               

scanline. 

 During scanline 240 the PPU begins the vertical Blanking mode for the next 20 scan               

lines. During this time, the CPU begins updating all the information that will be rendered on                

the following frame.  
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NES APU - The pseudo-Audio Processing Unit 

The APU generates the sounds from the NES. The APU registers are mapped to              

locations $4000-$4013, $4015, and $4017 in CPU memory. We plan on using GPIO pins to               

communicate the audio from a game with an attached speaker. The following figure shows              

which channel is mapped to a particular set of registers. 

Registers Channel Units 

$4000-$4003 Pulse 1 Timer, ​length counter​, ​envelope​, ​sweep 

$4004-$4007 Pulse 2 Timer, ​length counter​, ​envelope​, ​sweep 

$4008-$400B Triangle Timer, ​length counter​, linear counter 

$400C-$400F Noise Timer, ​length counter​, ​envelope​, linear 

feedback shift register 

$4010-$4013 DMC Timer, memory reader, sample buffer, 

output unit 

$4015 All Channel enable and length counter 

status 

$4017 All Frame counter 

 
 
 
 

 

http://wiki.nesdev.com/w/index.php/APU#Pulse_.28.244000-4007.29
http://wiki.nesdev.com/w/index.php/APU#Length_Counter
http://wiki.nesdev.com/w/index.php/APU_Envelope
http://wiki.nesdev.com/w/index.php/APU_Sweep
http://wiki.nesdev.com/w/index.php/APU#Pulse_.28.244000-4007.29
http://wiki.nesdev.com/w/index.php/APU#Length_Counter
http://wiki.nesdev.com/w/index.php/APU_Envelope
http://wiki.nesdev.com/w/index.php/APU_Sweep
http://wiki.nesdev.com/w/index.php/APU#Triangle_.28.244008-400B.29
http://wiki.nesdev.com/w/index.php/APU#Length_Counter
http://wiki.nesdev.com/w/index.php/APU#Noise_.28.24400C-400F.29
http://wiki.nesdev.com/w/index.php/APU#Length_Counter
http://wiki.nesdev.com/w/index.php/APU_Envelope
http://wiki.nesdev.com/w/index.php/APU#DMC_.28.244010-4013.29
http://wiki.nesdev.com/w/index.php/APU#Status_.28.244015.29
http://wiki.nesdev.com/w/index.php/APU#Status_.28.244015.29
http://wiki.nesdev.com/w/index.php/APU#Frame_Counter_.28.244017.29
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SD Card interfacing 

 For our NES Emulator we used the SD Card module built onto the DE2i-150 board to                

receive files from a SD card. The SD card holds the game roms we will be using to test and                    

play with the NES system. The SD Card module reads the data stored in the game rom and                  

sends it to its proper locations in memory. The game ROM have data that is stored on the                  

CPU memory. They also have data belonging to the PPU memory. After the data has been                

sent to the components, the SD Card is no longer used.  

VGA Interfacing 

The Terasic DE2i-150 Board has a built in VGA port that we use to render pixels to                 

the screen. Our NES Emulator supports a resolution of 256x240, which is the original              

resolution from the original Nintendo. To render the pixels onto the screen, we utilize the               

NIOS II processor built in the VGA C library. The VGA module only supports RGB signals                

format. We then modified our NES system to produce output in RGB instead of the original                

output of the NES, which was in NTSC format.  

One important thing to note is that the Nios VGA Controller uses a frame buffer. In                

order to keep reading and writing times fast enough to now slow down frame rendering, we                

used SRAM stored in the board to work as a frame buffer. This is how the Nios library for                   

VGA rendering is able to write to certain pixels at different times. 

Controllers 

Utilizing the GPIO pins on the DE2i-150 board, we created a Verilog module for              

accessing button inputs from either an original NES controller or SNES controller. Button             

inputs will be sent to the corresponding I/O registers through 8 bits from the NES controller                

and 12 bits from the SNES controller. 
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Construction of a Prototype 

Outline 

● NIOS II SOPC Interface 
● CPU 
● PPU 
● SD Card Interface 
● VGA 
● Controller 

 
 
NIOS II SOPC Interface 

The first stage of our prototype starts on designing the layout of what board              
components we want to use using the software called Qsys. This software allows us to tell                
the board what components we are going to be using. Some examples of the components               
we use are the NIOS II processor, a clock, Sram memory, VGA and the Altera SD Card.  

 
Building our components using Qsys 
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After we finish telling the board what component we are using, Qsys creates a verilog               
code that helps us link these components to the NIOS processor. This helps us access the                
components whenever we write C code in NIOS. We can view the Verilog code in a software                 
called Quartus II. This software programs the components using the Verilog programming            
language to prepare them for the heavy work that the NIOS II processor processes. 

 
The main Verilog module for our project 

 
Once we are ready to program the FPGA, we simply use the programer within Quartus and 

program the board. 

 
Configuring the FPGA using Quartus II 
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CPU 
 
On our working prototype we managed to create a working CPU that is able to               

properly execute all of the instructions that the original NES could run. The CPU is able to                 
execute over 150 instructions.  
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PPU + VGA 
Throughout the process of constructing our prototype, we had several issues with            

displaying a correct output. We first began displaying random pixels as shown on the image               
below, then we were able to display a solid color. As we kept researching on the                
functionality of the PPU and its colors, our output to the screen was improving. Now, we are                 
able to display full frames with the correct colors and tiles with some minor bugs. 

  
PPU and VGA process throughout project 

 

 
SD Card Interface  

The SD Card was one of the main components that needed to be constructed in               
order to test the CPU and PPU. Our project uses an SD card with standard capacity (SDSC)                 
to read data. In order for the SD card to be compatible with the DE2 FPGA board it needs to                    
be formatted to FAT16. 

 

 
SDSC FAT 16 Card 
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Controller 

We have the NES controller functioning properly with the boards GPIO pins. 
See implementation for more details. 
 

 

NES controller Hooked up to the DE2i-150 Board 
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Implementation 
 
Our implementation of an NES FPGA Emulator revolved around working with Quartus II Web 
Edition for Verilog development, and Eclipse  
Outline 

● Implementation of the NES CPU 
● Implementation of the NES PPU 
● pseudo-Audio Implementation 
● NES Controllers 

Implementation of the NES CPU 
 

Outline 
● Registers and Memory 
● Parsing Through Data 
● Addressing Modes 
● Decoding Instructions 
● Execution 
● Interrupts 
● Mirroring 

 
 

Registers and Memory 
To ease data manipulation, two main data types are defined in our Nios C project, a byte, 
and a word. This ensures we deal solely with 8-bit and 16-bit numbers for addressing and 
transferring data. For any registers related to the CPU, we implemented them by creating a 
struct that encapsulates all registers, A, X, Y, PC, P, and S, as well as memory (which is 
implemented as an array of bytes) and any necessary flags for interrupts. These are all bytes, 
with the exception of PC, since this is 16-bits wide. Also, to ease us in working on certain 
regions in memory, we made a set of pre-processor defines. 
 

Parsing through Data 
Since programming the 6502 CPU core was done in C, we utilized structs and pointers. After 
using the SD Card Interface in Nios II to read in the NES ROM, the CPU starts parsing 
through data in terms of bytes. It’s important to note that the CPU merely reads from the 
PRG ROM previously mentioned in the Program Design (see ‘CPU Memory Map’ figure.) This 
PRG ROM, thanks to our use of SD Card interfacing functions from Altera, has already been 
read into one big array used within our CPU struct instance. 
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Addressing Modes 
We implemented addressing modes by making all opcodes go through a set of functions 
that grabbed the operand based on the addressing mode. This saved space and possibly 
resulted in better performance, because implementing all opcodes without having specific 
functions for each addressing mode would definitely have redundancy. For example, there 
would be over 20 instructions that need their operand to be fetched through Zero Page. 
Instead of writing the code of fetching it each time, for each instructions, we simply call the 
corresponding function for Zero Page. Certain addressing modes required careful 
manipulation of reads and writes. Zero Page, X, for example, needed the calculated address 
to wrap around in the case of going over the page boundary. In this, I implemented wrapping 
by basically performing a bitwise AND by 0xFF, since the calculated address would have to 
wrap back to 0x00 in case the calculated address went over. 
 

Decoding Instructions 
We implemented instruction decoding by setting up the CPU to parse the very first byte as 
the opcode, which will always be a an 8-bit number. From here, we essentially use a switch 
statement that goes to certain cases based off of the instructions to be executed. This is 
essentially a jump table under certain optimizations in a compiler. From here, we take the 
next step in executing instructions by deciding what type of addressing mode we’re in, 
which is decided based on what opcode we have. 

 
Execution 
The general flow for executing an instruction in our implementation of the NES CPU is 
to: 

● Grab the operand by calling the corresponding addressing mode function. 
● Access memory, if need be. 
● Perform operation. This is usually moving data, arithmetic, or manipulating the 

flags. 
● Increment the PC every time we read another byte. This is done in C extensively 

by calling ‘CPU->PC++’ (return PC and increment it after) 
● Keep track of number of clock cycles needed to execute last instruction. 

 
To avoid redundancy, we made specific functions for fundamental actions in the CPU. 
This is essentially memory reads, memory writes, and one unique function per  type of 
instruction, NOT per opcode. This is because we may have 4+ versions of the same 
instruction, such as LDA. Therefore, we split up instructions in terms of addressing 
mode and type of instruction. 
 
In an attempt to save on runtime overhead, we tried to inline our functions as much as 
possible, even though the compiler may already be doing so.  
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Interrupts 
Implementing interrupts was simple. Before running the next CPU instruction tick 
function, we had a check, one for each type of interrupt. Since reset is the highest 
priority, this was checked first. Since our CPU struct had registers reserved for each 
interrupt, we would check to see if these registers were ‘1’, and if so, we would run the 
corresponding subroutine for them. It is up to the NES game program itself to set these 
registers, so all we need to do to maintain this system of interrupt checking is to make 
sure we implement the interrupt setting correctly. For NMI, this is done by the PPU 
during the the start of Vblank. Reset is implemented by setting the register to ‘1’ if the 
reset button is pressed on the FPGA board itself. And for IRQ, since this is essentially a 
BRK instruction, the program should be responsible for setting this. 

 
Mirroring 
Mirroring was also pretty simple to implement. We have each mirrored region in 
memory hardcoded into our memory access functions. This means, for example, that 
when writing to $2008, would produce a write to $2000. This is done by checking if we 
are trying to read or write to a mirroring region, and if so, we would simple read or write 
to the location ‘&’ mirror_mask. In this case, mirror_mask would be ‘7’, since in this 
region, we mirror every 8 bytes. So fully implementing mirroring was just a matter of 
hardcoding these address manipulations to write to the actual memory location. 
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Implementation of the NES PPU 
 

Outline 
● Memory Map 
● Pattern Tables 
● Nametables 
● Attribute Tables 
● Color Palettes 
● OAM 
● Rendering/Timing  

 
Memory Map 

Initially, we implemented the PPU memory map using a struct which only            
encapsulating the main memory, which is created by an array of bytes. However, as our               
design increased in size, we added the ability to store the sprite tables, a sprite buffer for                 
rendering, variables to keep track of the current scanline and also variables that are used to                
read off the CPU registers. Lastly, we added a special array of structs. The array contains                
specific information for every frame tile. 
 
Pattern Tables 

As explained in the Program Design section, Pattern tables are tables that contain             
background tiles and sprite tiles. The memory map struct that we created encapsulates an              
array of bytes called MEM. This array is 0xFFFFF long and contains all the data that will be                  
used by the picture processing unit. The actual data that goes inside the Pattern table               
addresses (0x0000-0x2000) come from the CHR portion of the game ROM, and that comes              
when we read the ROM file using the SD Card. This data will never be modified after is                  
written on these address. Also, data can only be read.  
 
Nametables 

NameTables contain the address of the tiles first byte from the pattern tables. There              
a total of four nametables inside the MEM array within our PPU struct where two of those                 
nametables serve as mirrors of the first two nametables. There isn't a complete             
implementation for the nametables. They are just addresses in memory where the I/O             
registers write to those memory locations.  
 
Attribute Tables 

The functionality of the attribute table were already explained in previous sections.            
Attribute tables are part of memory that also get written by the IO registers. However, we                
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created a separate space of memory that is 960 bytes in size. This is the special array that                  
we mentioned earlier. This array of structs hold all the possible information that needs to be                
known for every tile on the visible screen. As mentioned earlier, every attribute byte modifies               
4x4 tiles. Thereafter, the 4x4 tiles are split into four 2x2 tile sections. Each of those sections                 
share the same bits from the attribute byte. For more clarity of how it works, see the Program                  
Design section. We can conclude that every tile will have an specific bit location to grab from                 
the attribute byte.  

This special array of structs called ATTRIBUTE_TABLE_INFO, contains which bits          
need to be access from the attribute byte for every tile on the screen. The array also contains                  
if the tile is on the top left, top right, bottom left or bottom right of the 4x4 tile set. For                     
debugging purposes, we also added a scanline as a member of the struct to be able to                 
identify on which scanline the tile resides.  
 
Color Palettes 

The color palettes also reside within the MEM array in our PPU struct. The              
implementation for this is quite straight forward. The I/O registers write data onto these              
memory addresses. However, the data stored are bytes that are used as offsets. We created               
a global dynamic array of ints that contain the original NES colors in hex in the RGB format.                  
These values are 30 bits long and are used with the VGA controller to output the correct                 
pixels. The data stored on the color palettes are offsets to this global array of ints.  
 
OAM 

The OAM works the same as how the nametables work. The OAM is an extra               
allocated memory in the PPU struct outside the MEM array. It was implemented using an               
array of bytes. The I/O registers write to these memory locations and updates it for every                
frame. When it is time to render to the screen, the PPU grabs the information of the sprites                  
on this table and outputs it onto the screen. 
 
Rendering 

Overview  

The main task of the PPU is to have the memory allocated for the nametables,               
attribute tables, pattern tables, sprite tables and color palettes. The PPU then renders the              
appropriate data onto the screen after the I/O registers write to these memory locations.  

Rendering Process  

The PPU begins rendering from Scanline 0 to scanline 240. For every Scanline the              
PPU process 340 PPU Cycles to fetch the scanline data and to render. During these               
Scanlines, the CPU is not supposed to write to the PPU via I/O registers because they can                 
ruin the output. However, they are some rare special cases were writing to the PPU is                
required during the rendering cycles.  

When rendering the background tiles, the PPU first fetches the first byte in the              
nametable. This byte is the address offset from the pattern tables for the first address of the                 
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tile. After that, the PPU combines the following 16 bytes into i set of 8. This gives us the first                    
2-bits for each individual pixel. Thereafter, the PPU locates the special array of structs              
mentioned earlier called ATTRIBUTE_TABLE_INFO. We obtain the bits that we need access            
from the attribute byte and we do a logical AND. This will give us the upper 2 bits for the                    
color for every individual pixel. Now, we combine the upper and lower 2 bits that we                
obtained and will serve as an offset the color palette. When accessing the color palette, the                
data stored will be another offset. This will be the offset of the global array of ints. The data                   
obtained here will be the true RGB color that will displayed for that specific pixel. We repeat                 
the rendering process for each pixel of all of the tiles that will be rendered to the screen.  

Vertical Blanking 

After the PPU is done rendering, the PPU runs twenty non-visible scanline. During this              
scanlines, the CPU writes to the I/O registers and these registers write to the PPU memory                
locations. This updates the information to be displayed in the following frame.  

 

APU -Implementation  

- We did not have enough time to implement Audio in our 

NES Emulator design. 

Controllers 

We used Verilog for the implementation of the NES/SNES controllers.  

The controller has 2 input pins: Latch and Pulse, while having one output pin Data. The 

datasheet of the NES and SNES controllers are very similar as they first start off taking in a 

Latch. When the Latch receives an off signal, the pulse would oscillate on and off. As the 

pulse oscillates, the data would return the state of the button that the pulse is on. If the 

button is pressed for that specific pulse, data would return a 0 (active low).  

We check for every pulse corresponding to each button. NES Controllers have a total of 7 

pulses with 1 latch, making 8 buttons. The SNES controller has 16 pulses as well as a latch, 

with only 12 buttons. The last 4 pulses of the SNES controller return nothing. We build a 
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state machine to run through every pulse and button to build the bits to send to the rest of 

the NES/SNES.  

State Machine: ​The state machines are shown are the following diagrams and table. The 

SNES is not shown as it is very similar to the NES Controller state, however we do have a 

diagram of the timings of the SNES controller. 

 

NES Controller States 

# STATES (Transitions) Data (Actions) 

1 Latch On 1  

2 Latch On 2  

3 Latch Off buttons[0] = A state 

4 (PULSE STARTS) B On  

5  B Off buttons[1] = B state 

6 Select On  

7 Select Off buttons[2] = Select state 

8 Start On  

9 Start Off buttons[3] = Start state 

10 Up On  

11 Up Off buttons[4] = Up state 

12 Down On  

13 Down Off buttons[5] = Down state 

14 Left On  

15 Left Off buttons[6] = Left state 

16 Right On  

17 Right Off buttons[7] = Right state 
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buttons[0] = A 
buttons[1] = B 
buttons[2] = Select 
buttons[3] = Start 
buttons[4] = Up 
buttons[5] = Down 
buttons[6] = Left 
buttons[7] = Right 
 

Example: 01010011 for NES controller have buttons: A, B, Up, and Left pressed. 
NES Controller Diagram 

 
Datasheet of NES Controller 
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SNES 
SNES Controller Diagram: 

 
Datasheet of SNES Controller 

buttons[0] = B 
buttons[1] = Y 
buttons[2] = Select 
buttons[3] = Start 
buttons[4] = Up 
buttons[5] = Down 
buttons[6] = Left 
buttons[7] = Right 
buttons[8] = A 
buttons[9] = X 
buttons[10] = Trigger Left 
buttons[11] = Trigger Right 
 

Example: ​12 bits: 101100100101 for the SNES controller have buttons: Trigger right, X, A, 
Down, Select, and B are press 
 

We switched the bits as 1 being buttons pressed and 0 for not pressed. We send the entire 8 

bits of the NES controller and 12 bits of the SNES controller to a button register for the CPU, 

PPU, and etc. to use.. 
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Testing 
 
We will go over three types of testing that we have done on our NES FPGA emulator:  
 

- Unit testing  
- Integration testing 
- Acceptance testing  

 

Unit testing: 

Unit testing outline 

● CPU 
● PPU 
● SD Card Interface 
● VGA 
● Controller 

 
We deal with testing with a lot of outputs to either the terminal through the LED lights on the 
FPGA board. The variety of methods provides versatility when it comes testing. The LED 
lights definitely let us know what parts of the code do and do not work. The testing process 
helped us accurately know if everything up and running correctly. 
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CPU: 
We test the CPU by outputting every instruction on every cycle. While each instruction 
executes, we get to see the IO registers and their values in every one of these cycles​. We 
were also able to use some NES test roms, which essentially test out each instruction 
individually and lets us know if a certain instruction is implemented properly or not. Note that 
we don’t need the PPU implemented to be able to test out the CPU as well. 

 
Output of every instruction by the CPU. 

 
PPU: 
Rendering was tested on the PPU by outputting the contents of the nametables. We used an 
emulator and compared the tiles to be outputted to what our emulator was displaying in 
order to confirm that it was correct. 
 
SD Card Interface: 
We tested the SD Card interface by writing our modules for reading data from the SD card. 
We first preloaded the card with appropriate roms, confirmed that the interface was able to 
load the rom, and compare bytes being loaded with bytes being shown on a Hex editor 
program. 
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VGA: 
The VGA is easily tested by checking what is output to the screen. We used different VGA 
outputs including projectors and monitors to show a variety of outputs. Each screen contains 
different resolutions as well requiring different usages of numbers for the porches and timing. 
At first each screen showed no inputs detected. Eventually we were able to change the 
screens into purely black screens receiving no RGB signals. Finally by extensive changes to 
the timing signals for the VGA, we were able to output colors to the screens. After finding the 
appropriate clock, we tested each color with a variety of different scenarios to test on each 
pixel of the screen. The VGA worked out perfectly in the Verilog state. We also converted it 
for use through the NIOS II Processor which allowed us to run the VGA portion under C. 
However this proves slow to load compared to the Verilog portion of the VGA. This was one 
example of printing out different colors to each pixel of the screen. 
 

 
VGA Controller reading random data from the SRAM frame buffer (initial startup) 
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Controllers: 
The LED lights are used extensively for the NES Controller as we get to see what buttons are 
received by the FPGA board. At first, only some buttons were showing up on the LED lights, 
but as we progressed we eventually found all lights lighting up accordingly to each button 
press. Each LED lights represents the bits of each button that we send throughout the NES 
Emulator. Receiving the button input turns on the LED light. There are 8 lights corresponding 
the NES controller and 12 lights for the SNES controller. 
 

Integration testing: 
The great thing about the FPGA board is that it deals with the connections of each 
component separately. For example, we can take inputs from the NES Controller, send the 
inputs to a register that would send information to the CPU, APU, and PPU. The CPU would 
send information to the APU and PPU, and the PPU would send information to the VGA 
screen. All of these things can be tested separately first of all to see if each one is 
functioning correctly. We would slowly integrate each feature together to test if small 
incrementals of collaborating components would still successfully work. We continue on with 
this method to eventually achieve a fully working NES Emulator on a FPGA board. 
 

Acceptance testing: 
The most important part of the NES Emulator is getting the game to output on the screen 
where we can send inputs to the game from the controller. That would be the main 
acceptance testing for the game as it shows that the NES Emulator actually works the way it 
is suppose to. 
 
 

Maintenance Plan  

 
Our plan for maintaining the project due to future environmental changes involves 

working with newer FPGAs. Luckily, our main backbone for our emulator wouldn’t have to be 
altered, since all we would have to change to accommodate for a new FPGA would be 
dealing with drivers for peripherals. Since our project does rely on the RISC Nios processor, 
we would most likely have to keep up with Altera-only models of newer FPGAs. Since we 
weren’t able to parallelize some PPU and CPU, improving performance would simply rely on 
the updated platform to be faster. 
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Conclusions 

 
In conclusion, our NES FPGA Emulator involved a large amount of collaboration, and being 
able to design an entire system, component by component, and piecing it all together. This 
was a big step from our regular courses, as it required our work to be presentable in a 
manner that was understandable and clearly documented for our partners to be able to 
digest and work with. 
 
Personal Growth 
We personally learned a lot about being able to work in a team on a semi-large scale project. 
This wasn’t with just being able to share and connect our work together, but about 
communication. Being able to clearly outline what needs to be done between each partner, 
and laying down the ground rules for well and timely a task needed to be done was crucial to 
getting a working prototype. 
 
What Surprised Us 
What surprised us most about the project was the sheer amount of research required to truly 
be able to understand the ins and outs of the NES. We can say with confidence that nearly 
half of the time spent working on the project, was spent going through dozens of 
documentations, some from possibly unreliable or outdated sources. Something that also 
surprised us was the lack of aid we received from the community at Altera, specifically with 
the DE2i-150 boards we had. Nearly all documentation we could find about a certain 
peripheral or driver related to our board was actually referring to older versions of our board. 
Not to mention, the lack of support for the many errors or bugs we encountered using the 
software, mainly Quartus II and the Eclipse Development Tool for Nios II. 
 
Things done differently 
One thing we would definitely do differently if we had another chance, would be to make 
sure everyone learns how to use the tools prior to actually starting the project. Also, if we 
had a better sense of communication, there would have been a better ordering of the 
different tasks that needed to be done. There were many times that not everyone would be 
on the same page in terms of understanding everything, which would have been easily 
remedied if we approached each other in a better manner. 
 
To conclude 
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In short, we were able to implement controls, a CPU core, and the video rendering, all to a 
certain degree to which we were able to get a decently working prototype. The only 
component we would be missing would be the audio processing. We used Verilog and C, 
thanks to the NIOS II processor we configured to be embedded on the FPGA. 
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