
NES FPGA Emulator

UCR CS 179J SUMMER 2014� Sergio Morales
� Hector Dominguez
� Omar Torres
� Randy Truong
� Kevin Mitton

Who are We?
● Computer Science and

Engineering Students trying
to implement an NES emulator
on an FPGA.

Outline
● Introduction
● The NES Central Processing Unit
● The NES Picture Processing Unit
● Hardware Implementations

- VGA Display
-Controllers

● The NES pseudo-Audio Processing Unit

Introduction

The NES CPU - RP2A03
● Stock NMOS 6502

○ Lacks BCD mode
● Memory Mapped I/O
● pseudo-Audio Processing
● 1.79 Mhz Clock

The NES CPU - Memory Map
● Program Space, AKA PRG ROM
● SRAM, for save games
● Expansion ROM
● I/O Registers
● RAM
● Stack
● Zero Page

The NES CPU - ISA
● Registers

○ 3 special purpose registers
■ PC, P, and S

○ 3 general purpose
■ A, X and Y

● P, or Status Register is crucial for most
instructions

The NES CPU - ISA
Bit Flag Description

0 C - Carry This flag is set to ‘1’ if the last instruction, most likely arithmetic
operations such as ADC caused a carry.

1 Z - Zero Set to ‘1’ if last instruction caused a result of 0.

2 I - Interrupt Disable Set to ‘1’ for IRQ interrupts to be disabled. See ‘Power-up State
and Interrupt Handling’ for more info on interrupts.

3 D - Enable BCD Not used in NES. Normally this would cause add and subtract
instructions to operate in BCD mode.

4 B - Break flag This flag only exists in BRK operations, when the flags are
pushed to the stack.

5 Unused

6 V - Overflow Set to ‘1’ if last instruction resulted in an overflow.

7 N- Negative Set to ‘1’ if last instruction resulted in bit 7 of the result to be 1.

The NES CPU - ISA
● Addressing Modes

○ 13 different addressing modes
● Around 50 instructions
● Combining unique instructions…

○ Over 150 total instructions

The NES CPU - Interrupts
● Interrupt Service

Request (IRQ)
● Non-maskable

Interrupt (NMI)
● Reset (RES)

Interrupt Location

NMI $FFFA-$FFFB

Reset $FFFC-$FFFD

IRQ $FFFE-$FFFF

The NES CPU - Implementation
● Case statements for opcodes

○ AKA Jump table
● Check for interrupts in main loop
● Hard code instruction count + page

boundary
● Memory mapping checks on writes and

reads

The NES CPU - Implementation
● Sync Picture Processing Unit with CPU

○ Keep track of CPU cycles versus PPU cycles
● Debug, debug, debug!

Picture Processing Unit (PPU)
● Memory Map
● Pattern Tables
● Nametable/Attribute Tables
● Color Palettes
● Object Attribute Memory (OAM)
● Registers
● Timing

PPU Memory Map

Pattern Tables

● Each 4096 Bytes long
● hold lower two color bits

Nametable/Attribute Tables

Color Palettes

● The PPU has two color palettes one for the
background tiles, and for the sprite tiles.

● The lowest two bits were obtained from the
pattern table and the upper two bits were
obtained from the attribute table.

● The NES does not output in RGB format,
instead it outputs in NTSC format.

● We created a converter NTSC to RGB.

Object Attribute Memory (OAM)

● Extra memory block outside the PPU and CPU memory maps
● contains all of the sprite information to be displayed at that exact frame to be rendered.
● The sprite data is stored on the pattern tables while the sprite attributes are stored on

this extra memory block.

● stores a total of up to 64 sprites
○ Each sprite in the OAM is composed of 4 bytes

■ Byte 0: Y Position of the top left of sprite minus one
■ Byte 1: The Tile index number within the pattern table
■ Byte 2: Attributes of the sprite (palette, priority, flipping)
■ Byte 3: X Position of left side of the sprite to be rendered

Registers
1. PPUCTRL $2000

a. Holds Flags to control PPU Operations.
i. Base nametable address, sprite sze, generate NMI.

2. PPUMASK $2001
a. controls screen enable, masking.

i. Show Background
3. STATUS $2002

a. reflects the state of various functions inside the PPU.
i. Vblank

4. OAMADDR $2003
a. Address of where the OAM data will go to.

5. OAMDATA $2004
a. Sprite data to be written on the address specified on register $2003

6. PPUSCROLL $2005
a. This register is used to change the scroll position

7. PPUADDR $2006
a. This register writes the address of where background data will go to.

8. PPUDATA $2007
a. Data that will be stored on the address specified by register $2006

Timing
● The PPU renders 262 scan lines per frame

○ 240 Visible scanlines
○ 20 Fetching data (Called Vblank)
○ 2 dummy scanlines

● only allowed to write one pixel for every PPU
cycle

○ Takes 341 PPU cycles per scanline
■ 256 for rendering and remaining

to fetch the data from
nametables

● What we could not do

Picture Processing Unit

Hardware
● VGA
● Controllers

VGA
 ● NES graphics via
FPGA VGA ports

● Began with VGA
Controller on Nios II
Processor

VGA
● Emulator supports 256x240 resolution

● NTSC is not supported by vga controller

● Used RGB instead

VGA
 ● Frame buffer used

for reading and
writing at a fast
rate.

VGA
Testing Vga
controller with
random sram data.

VGA
● Nios running to slow with computer interface

● Need to check other options

VGA
● Verilog!
● First time working with Verilog.

-Error message “No inputs detected”
- Black screens no RGB Signals
- Timing issues

VGA
● Using incorrect clock.

● Fixed timing issues.

-Finally Correct RGB output to the screen.

VGA
● Decided to use verilog, because it would

write to the screen at a faster rate.

Controllers
What is it?
-8 buttons for inputs

Controllers
 +----> Power
 |
 +-----------+
 | x x o \
 | o o o o |
 +------------+
 | | | |
 | | | +-> Ground
 | | +----> Pulse (input)
 | +-------> Latch (input)
 +----------> Data (output

Controllers
● NES

Controllers
● NES States:

17 States

STATES (Transitions) Data (Actions)

1 Latch On 1

2 Latch On 2

3 Latch Off buttons[0] = A state

4 (PULSE STARTS) B On

5 B Off buttons[1] = B state

6 Select On

7 Select Off buttons[2] = Select state

8 Start On

9 Start Off buttons[3] = Start state

10 Up On

11 Up Off buttons[4] = Up state

12 Down On

13 Down Off buttons[5] = Down state

14 Left On

15 Left Off buttons[6] = Left state

16 Right On

17 Right Off buttons[7] = Right state

Controllers
● SNES
- 12 buttons for
inputs

Controllers
● SNES

Controllers
● SNES

-34 states total
-However, 8 states are inactive
-Therefore, 26 active states

Controllers
● Stored bits into array buttons
● NES button array: (Active low)

buttons[0] = A
buttons[1] = B

buttons[2] = Select
buttons[3] = Start
buttons[4] = Up

buttons[5] = Down
buttons[6] = Left

buttons[7] = Right

Controllers
● Example:

Bits: 01010011 for NES controller have buttons:
A, B, Up, and Left pressed.

Audio Processing Unit
● How Sounds are

generated for NES

Audio Processing Unit
● APU and CPU on same

chip

Audio Processing Unit
● 20 Registers
● 5 Channels

○ Rectangle 1
○ Rectangle 2
○ Triangle
○ Noise
○ DMC

Audio Processing Unit
● Square/Rectangle Channels

Audio Processing Unit
● Triangle Channels

Audio Processing Unit
● Noise Channel

Audio Processing Unit
● DMC Channel

Thank You

Questions?

